US

NGSS and the landscape of engineering in K-12 state science standards

Tamara J. Moore, Kristina M. Tank, Aran W. Glancy and Jennifer A. Kersten

Recent documents pertaining to K-12 education have fostered a connection between engineering and science education to help better prepare our students and future citizens to better meet the current and future challenges of our modern and technological society. With that connection, there has been a concerted effort to raise the visibility of engineering within K-12 science education, which is reflected in the Framework for K-12 Science Education and the recently released Next Generation Science Standards. As states look towards the adoption and implementation of the Next Generation Science Standards, it is important to take a deeper look at the shift in K-12 science education that is being suggested by these documents and what that means in terms of the potential changes for states that have chosen to adopt these standards. The main research question that has guided the work for this paper is: What is the extent and quality of the engineering that is present in state science standards and the Next Generation Science Standards? This paper will present a detailed analysis of the landscape of engineering in K-12 policy before and after the release of the NGSS through a comparative case study of academic state science standards and Next Generation Science Standards. This comparison provides insight into what the widespread adoption of the NGSS would mean in terms of potential changes in the way we implement science education in the United States.

Link

Advertisements

Examining the nexus of science communication and science education: A content analysis of genetics news articles

Nicole A. Shea

Access to science information via communications in the media is rapidly becoming a central means for the public to gain knowledge about scientific advancements. However, little is known about what content knowledge is essential for understanding issues presented in news media. Very few empirical studies attempt to bridge science communication and science education research. This study presents findings from an inductive content analysis of genetics news articles from the New York Times’ science section. The analysis sought to characterize the genetic content knowledge anticipated as necessary to reason about featured issues. From the analysis, it is anticipated that individuals need detailed knowledge of molecular mechanisms in order to reason about such issues. Implications for supporting students’ scientific literacy in terms of the nexus of science communication and science education is discussed.

Link

Evolutionary theory in letters to the editor

This research note presents the results of a content analysis of 234 letters to the editors that discuss evolutionary theory and were published in American newspapers. We find that letters to the editor both support and hinder the cause of teaching evolutionary theory in American secondary schools. On the one hand, anti-evolutionary theory messages are marginalized in the letters section. This marginalization signals a low level of legitimacy for creationism. It might also contribute to the sense of tension that sustains creationist identities. On the other hand, relatively few letters explicitly note the fact that scientists or the scientific community accept evolution. Interestingly, the obscuration of the scientific community’s support for evolutionary theory occurs both in letters supporting and opposing evolutionary theory.

Link

The Space Public Outreach Team (SPOT): Adapting a successful outreach programme to a new region

Kathryn Williamson, Angela Des Jardins, Irene Grimberg, Shane L. Larson, Joey Key, Michelle B. Larson, Sue Ann Heatherly, David McKenzie, Tyson B. Littenberg

The Space Public Outreach Team (SPOT) recruits and trains undergraduate ambassadors from all disciplines to deliver astronomy and space-science-themed interactive presentations. They deliver these presentations to primary and secondary schools and organisations across the state of Montana, USA. SPOT was started in 1996 by physics graduate students at Montana State University, USA, and it has grown to reach an average of 10 000 students per year for a low institutional cost of less than five dollars (four euros) per student. In the last year, the Montana SPOT model has been adopted in the state of West Virginia. The West Virginia SPOT programme also shows great potential, with eleven ambassadors trained to give two new feature presentations, reaching over 2600 students. In this paper, we describe how the Montana SPOT model works in practice and discuss how this model was adapted with new resources, and for a new audience, such that others may also adapt the programme to inspire space science interest for their own particular setting. We invite these groups to plug into the SPOT brand to broaden the impact of astronomy and space programmes and applications in their own region.

Download